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Power  Series :  An  infinite  series  of  the  form  

 ∑ ��
�
��� ( � − ��)� = �� + ��(� − ��) + ��(� − ��)� + ⋯ 

is  called  a  power  series, with  ��  as  the  point  of  expansion. The   constants  �� 

are  called  coefficients   of  the  power  series. 

Example :  The  geometric  series  ∑  �
��� ��  converges   if  |�| < 1 

We   ask  the  following  questions. 

1. For  what  values  of  z  does  the  series  ∑ ��
�
��� ( � − ��)�  converges ? 

2.  What  properties  can  be  attributed  to �(�) = ∑ ��
�
��� ( � − ��)�  at  points  

where  the   series  converge ? 

3.  Under  what  condition  may  a  function  f(z)  be  represented  by  a  power  series  

in  some  neighbourhood  of  a  point ? 

Theorem 1 :  Let  ∑ ��
�
��� ��  be  a  power  series. Then,  any  one of  the  following  

holds : 

(i) either   it  is  absolutely  convergent  for  all  � ∈ ℂ 

(ii)  or, there  is  a  unique  non  negative  real  number  R  such  that 

    (a)  ∑ ��
�
��� �� is  absolutely  convergent  for  all � ∈ ℂ  with  |�| < �, and 

     (b)  ∑ ��
�
��� ��  is  divergent  for  all � ∈ ℂ  with |�| > � 

The  unique R > 0  is  called  the  radius  of  convergence  of  the  power  series. The  

circle  |�| = �  is  called  the  circle  of  convergence  of  the  power  series. 

Proof :  Read  yourself  

Generalisation :  Consider  the  series  ∑ ��
�
��� ( � − ��)�.  

 According  to  theorem 1, the  given  series   is  absolutely  convergent  for  all � ∈ ℂ  

with  |� − ��| < �,  and  divergent  for  all  � ∈ ℂ  with  |� − ��| > �. 

Uniform  Convergence :  The  sequence  {��(�)}  is  said  to  converge  

uniformly  to f(z)   on  the  set  T  if  for  every � > 0  ∃  a  positive  integer N( 

depending  only on  � )  such  that  if  � ≥ �,  then  |��(�)| < �  for  all   � ∈ �. 
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Weierstrass  M-test : Let  the  infinite  series  ∑ ��(�)�
���   have  the  property  

that  for  each  �, |��(�)| ≤ ��  for  all  � ∈ �. If  ∑ ��
�
���   converges,  then 

∑ ��(�)�
���   converges  uniformly  on  T. 

 

Theorem 2 : A  power  series  is  uniformly  convergent   within  its  circle  of  

convergence. 

or 

Let  R  be  the  radius  of  convergence  of  the  power  series   ∑ ��
∞
�=0 ( � − �0)�. 

Then,  for  each �, 0 < � < � ,the series  converges  uniformly  on  the  closed  disk 

 ��(��, �) = { �: |� − ��| ≤ �} 

Proof :  

            

Choose   0 < � < �. Then,  there  exists �� such  that  

� < |�� − ��| < �  and  the  series  ∑ ��
�
��� ( �� − ��)�   is  convergent. 

So, the  sequence  { ��( �� − ��)�  }   converges  to  zero  as  � → ∞   and  hence  

bounded. 

So, there  exists  a  constant M > 0   such  that    |��( �� − ��)�| ≤ �   ∀ � ≥ 0 ....(1) 

Let  � ∈ ��(��, �). Then,  |� − ��| ≤ � < |�� − ��|  

                              or,   
|����|

|�����|
= � ( ��� ) < 1.                            
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 But,    |��( � − ��)�| = |��||� − ��|� = |��||�� − ��|� |� ���|�

|�����|�       

                                                      =  |��( �� − ��)�| �
� ���

�����
�
�
  ≤ ���  , � ≥ 0                

Now, the  series   ∑ ��� �
���   is  a   geometric  series  with  common  ratio    � < 1  

and  hence  convergent. 

So, by   Weierstrass  M-test ,  the  series    ∑ ��
�
��� ( � − ��)�    converges  uniformly  

in   ��(��, �).     

The  next  theorem  shows  that  every  function  defined  by  its  power  series  is  

analytic  inside  its  circle  of  convergence. 

Theorem 3 :  Let  � > 0   and    �(�) = ∑ ��
∞
�=0 ��    converges  for  |�| < � 

.Then,   �(�) is  analytic  for  |�| < �   with   ��(�) = ∑ �������.�
���    

Proof :  The  series  ∑ ������� �
���   is  absolutely  convergent  for  |�| < � . (Why ?..) 

    Let  �(�) = ∑ ������� �
���  ,  |�| < �.   

We  show  that  ��(��) = �(��)   for  |�0| < �.  i.e  lim�→��
 �

�(�)� �(��)

����
− �(��)�  = 0.     

   

Choose  r  such  that  |�0| < � < �. 

As  � → �0,  we  restrict  z  so  that |�| < �. 

Let  ∈ > 0. As,  ∑ ������� �
���   converges   absolutely, ∃  a   positive  integer  N  such  

that   ∑ | ������� | <
∈

�
�
�����          .....(1)   

Keeping   N  fixed  and  � ≠ �0,  we  have 

 
�(�)� �(�0)

���0
− ∑ ����0

��� = ∑ ��
(����0

�)

���0

�
��� − ∑ ����0

����
���

�
���  
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                                       = ∑ ������� + �����0 + ⋯ + �0
�−1��

��� − ∑ ����0
����

���  

                                    =  ∑ ������� + �����0 + ⋯ + �0
�−1 − ��0

�����
���  

                                    = ∑ ������� + �����0 + ⋯ + �0
�−1 − ��0

���� +�
���

                                                        ∑ ������� + �����0 + ⋯ + �0
�−1 − ��0

�����
�����  

or,    
�(�)� �(��)

����
 -  ∑ ����0

����
���    = �� + �� 

or, � 
�(�)� �(�0)

���0
 −  ∑ ����0

��� �
��� � < |��| + |��|        .....(2) 

Now,   

 �������� + �����0 + ⋯ + �0
�−1 − ��0

����� ≤ |��|������ + �����0 + ⋯ + �0
�−1� + �|�0|���� 

                                      ≤ |��|�|�|��� + |�|���|�0| + ⋯ + |�0|�−1 + �|�0|���� 

                                            ≤ |��|����� + ����� + ⋯ + ��−1 − ������ 

                                       = |��|(����� + �����) 

                                              = 2|��| ����� 

∴  |��|  ≤ ∑ 2�
����� |��| ����� <  

∈

�
     [  From (1) ] 

Also,  �� = ∑ ������� + �����0 + ⋯ + �0
�−1 − ��0

�����
���   is   a  polynomial in  z. 

∴ lim
�→�0

�� = lim
�→�0

� ∑ ������� + �����0 + ⋯ + �0
�−1 − ��0

�����
��� � 

             = ∑ ����0
��� + �0

����0 + ⋯ + �0
�−1 − ��0

���� = 0�
���  

So,  for  a  given  ∈ > 0, ∃ � > 0  such  that   

   |�� − 0| <
∈

�
    whenever  0 < |� − �0| < � . 

Thus,  for |�| < �  and  |� − �0| < � ,  we  have 

� 
�(�)� �(�0)

���0
− �(�0)� <

∈

�
   +

∈

�
   = ∈    [  From  (2) ] 
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⟹ lim�→�0
 

�(�)� �(�0)

���0
= �(�0) 

or,  ��(�0) = �(�0). 

Thus, f(z)  is  analytic  inside   |�| < �  ( Proved ) 

Corollary :  Theorem  3  can  be  repeatedly  applied  to  obtain,  

 ��(�) = ∑ �(� − 1)(� − 2) … (� − � + 1)�������
���  

          =  �! �� +
(���)! 

�!
����� +

(���)!

�!
���� �� + ⋯,    |�| < � 

Setting  z = 0 ,  we  observe   the   coeffecients  ��   are   associated   with   the  sum  

function   through   the    following  expressions, 

    ��(0) =  �! �� 

or,         �� =  
�

�
(0)

�!
 .  

 The   representation  �(�) = ∑
��(�)

�!
���

���   is   called  the  Maclaurin  series  

representation  of  �(�) . 
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Taylor  Series : 

We  saw  that  the  complex  power  series  ∑ ��
�
��� ( � − ��)�  is  analytic  in  their  

region  of  convergence |� − �0| < � ,  where  R  is  the radius  of  convergence. 

We  now  prove  the  converse  part i.e. if   �(�) is  analytic  in  the  disk |� − �0| < �,  
then �(�)  can  be  represented  by  a  power  series  of  the  form  

�(�) = ∑ ��
∞
�=0 ( � − �0)�. 

Thus,  every  holomorphic  function  defined  in a  domain  D  possesses  a  power  

series  expansion  in  a  disk  around  any  point  �0 ∈ �. 

     Remainder  after  n  terms :  

� = �� + �� ,   

Where  S =  sum  of  the  series,  �� =  sum  of  the  series  after  N  terms,                   

�� =  remainder  after  N  terms. 

∴ |�� − �| = |�� − 0| 

We  observe  that  a  series  converges  to  a  number  S  if  and  only  if the sequence  

of  remainders   tends  to  zero. 

Defination  of  Taylor  series :  If  �(�)  is  analytic  at � = ��,  then  the  series  

�(��) + ��(��)( � − �� ) +
���(��)

2!
(� − ��)� +

����(��)

3!
(� − ��)� + ⋯      = �

�
�

(��)

�!
(� − ��)�

∞

�=0

 

is  called  the  Taylor  series  for  f  centered  at  ��.  When   the center  is   �� = 0,  the  

series  is  called  Maclaurin  series  for  f.     

Taylor’s  Theorem :  Let  f    be  analytic in  a  domain D  and  let  �� ∈ � ,

�(��, �)  be  any  disk  contained  in  D. Then, the  Taylor  series  for  f   converges  

to   �(�)  for  all  z  in  �(��, �)  i.e.  

    �(�) = ∑
��

(��)

�!
(� − ��)�∞

�=0   , for  all  � ∈  �(��, �). 
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Moreover, for   any  �, 0 < � < � , the  convergence  is  uniform  on  the  closed  disk   

��(��, �) = { �: |� − ��| ≤ �} .           

or 

If  �(�) is  analytic  in  a  circular domain D  with  center �� , then   for  every  z  in  

D,  �(�)  can  be  expressed  as  a  power  series  about ��.   

i.e.  �(�) = ∑ ��
�
��� ( � − ��)� ,  where  �� =  

��(��)

�!
 

Proof :   Let � ∈ �(�0, �)  and  let  r  denotes  the  distance  between ��  and � 

i.e.  |� − ��| = �. 

Clearly,  0 ≤ � < � . 

Choose  �  such  that  0 ≤ � < � < �  and  let  C  be  a  positively  oriented  circle  

centered  at  ��  and  radius  �. 

   

By   Cauchy’s   integral  formula, 

 �(�) =
�

���
∫

�(�)

���
�

 

�
�                 ... (1) 

Now,   

1

� − �
=

1

(� − �0) − (� − �0)
=

1

� − �0
 �

1

1 −
� − �0
� − �0

� 

         = 
�

���0
�1 −

�−�0

���0
�

��
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   Let  
����

�−��
= �.  Then,   |�| =

��−�0�

����0�
=

�

�
< 1 

So, 
�

��
�−�0
���0

=  
�

���
= 1 + � + �� + �� + ⋯ + ���� +

��

���
 

               =1+ 
����

�−��
 + 

(����)�

(�−��)� + ⋯ +
(����)���

(�−��)��� +
(����)�

(�−��)���(�−�)
 

So, (1)   gives  

�(�) =
�

���
∫ �

�

���0
+

�−�0

(���0)
2 +

(�−�0)
2

(���0)
3 + ⋯ +

(�−�0)
�−1

(���0)
� +

(�−�0)
�

(���0)�(���)
� �(�)

 

�
��                         

or, �(�) =
�

���
∫

�(�)

���0

 

�
�� + 

�−�0

���
∫

�(�)

(���0)�

 

�
�� + ⋯ +  

(�−�0)�−1

���
∫

�(�)

(���0)�

 

�
�� +

                    
 (�−�0)�

���
∫

�(�)

(���0)�(�−�)

 

�
�� 

or, �(�) = �(�0) + (� − �0)
��(�0)

�!
+ (� − �0)� ���(�0)

�!
+ ⋯ + (� − �0)��� ����(�0)

(���)!
+

��(�), 

where   ��(�) =
 ��−�0�

�

2��
∫

�(�)

��−�0�
�

(���)

 
�

�� 

or, �(�) = �� + ��(� − �0) + ��(� − �0)� + ⋯ + ����(� − �0)��� + ��(�) ,     

   �ℎ���   �� =
��(�0)

�!
 

We   next  show  that  ��(�) → 0  ��   � → ∞ . 

From   our   constructions,  |� − ��| = � , |� − ��| = � 

∴  |� − � | = |(� − ��) − (� − ��)| 

                 ≥ |� − ��| − |� − ��|   

                     = � − �    

Let  � = max�∈�  | �(�)| 
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∴  |��(�)| = �
�

���
∫

�(�) (�−�0)�

(���0)�(�−�)

 

�
���         .....(2) 

Now,  � 
���� ��−�0�

�

��−�0�
�

��−��
 � = � 

 ��−�0�
�

��−�0�
�  � � �(�)

�−�  � ≤ � 
� 

�
 �

� �

���
 

Length   of   C  is  2��. 

So, by   using   ML  inequality  in  (2),  we  get 

|��(�)| ≤
�

��
� 

�

�
 �

� �

�−�
(2��)  → 0  �� � → ∞  ,  as  

�

�
< 1 . 

Thus,  the  series   ∑
�

�
(�0)

�!
(� − �0)�∞

�=0   converges  to  �(�), for  all  � ∈  �(��, �). 

 Now,  the  radius  of  convergence  of  the  series    ∑
��(�0)

�!
(� − �0)��

���   is   

atleast   R,  which   implies   that   the  power  series  converges   uniformly  on  every  

closed  disk   ��(��, �) ,  where  0 ≤ � < � .    

Theorem 4 : The   function �(�)  is   analytic  at �� if  and  only  if  it  can  be  

expanded  in  Taylor  series  at  ��. 

Proof :  Combine  proofs  of  Theorem 3  and  Taylor’s  theorem. 
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Taylor  series  expansion  of  some  well  known  functions : 

1. �(�) = �� 

2. �(�) = ��� � 

3. �(�) = ����� 

4. �(�) = ���� 

5. �(�) = ����  

6. �(�) = ���ℎ� 

7. �(�) = ���ℎ� 

8. �(�) =
�

���
 

9. �(�) =
�

���
 

10. �(�) =
����

(���)(���)
, |�| < 2 

11. �(�) =
(���)(���)

(���)(���)
 , |�| < 1 

12. �(�) =
�

�
  �����  � = 1 

13. �(�) =
�����

����
  �����   � = 1 

14. �(�) =
�

(���)�    �����   � = −� 

15. �(�) =
�

(���)(���)�   ����� � = 1 
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Laurent  Series : 

Annulus :  Given, 0 ≤ �� < �� , we  define  the  annulus  centered  at �� with  

radii ��  ���  ��  by 

� = �( ��, ��, ��) = � � ∶ �� < �� − �� 
� < �� � 

                            

 

      Laurent   series   generalizes  Taylor  series. Taylor  series  has  positive  integer  

powers  and   converges  in  a  disk,  whereas  Laurent  series  is  a  series  of  

positive  and  negative  integer  powers  of   � − �� 
 and  converges  in an  annulus. 

Defination :  Let  �� be  complex  numbers  for  � = 0, ±1, ±2, ±3, …. The  

doubly  infinite  series   ∑ ���� − �� 
�

��
����   is   called  a  Laurent  series,  and  

defined  by 

� ���� − �� 
�

�
�

����

= � ���� − �� 
�

�
�

���

+ � ����� − �� 
�

��
�

���

 

                         =∑ ���� − �� 
�

��
��� + ∑

��

����� �
�

�
���   ,   where  �� = ��� 

Theorem  4 : Let  { ��(�)} be  a  sequence  of  functions  continous  on  a  domain   

D  containing  the  contour  C,  and  suppose  that  { ��(�)}   converges  uniformly  

to  �(�).  Then,  the  following  holds  : 

lim
�→�

� ��(�) �� =  � � lim
�→�

��(�)� �� = � �(�) ��
 

�

 

�

 

�

 

Proof:   Let  L  be  the  length  of  C. Choose  N  large  enough  so  that                
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   � �(�) − ��
(�) � <  

∈

�
   for   any  � ≥ �  and   for  all  z  on  C. 

Then,   by  ML  inequality 

�� �(�) ��
 

�

− � ��
(�) ��

 

�

� = �� � �(�) − ��
(�) ���

 

�

� <
∈

�
 × � = ∈ 

 

��,    lim
�→�

∫ ��(�) �� =  ∫ (lim�→� ��(�))��
 

�

 

�
  ( Proved ) 

 

Theorem  5 : If  ∑ ��
(�)�

���   converges  uniformly  to �(�)  on  a  domain  D,  then  

for  any  contour  C  in  D  the  following  holds : 

� � �
�

(�)

∞

�=0

 ��
 

�

= � � �
�

(�) ��
 

�

�

���

 

Proof :  Let  ��(�) = ∑ ��(�)�
�=0 .  

  Then, � ��(�) �  converges   uniformly  to  �(�) . 

 

∴  lim
�→∞

� ��(�) �� =  � � lim
�→∞

��(�)� ��
 

�

 

�
 

  

��,  lim
�→�

�  � ��(�)

�

�=0

�� = � �(�) ��
 

�

 
 

�

 

or,  lim�→� ∑ ∫ ��(�) �� = ∫ ∑ ��(�) ���
���

 

�

 

�

�
���  

or,  ∑ ∫ ��(�) ��
 

�
�
��� = ∫ ∑ ��(�)�

���  ��
 

�
   ( Proved ) 
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Laurent’s  Theorem : Let  �(�) be  analytic  in  an  annulus  domain 

� = � � ∶ �� < �� − �� 
� < �� �. Then, �(�)  can   be   represented  by  the  Laurent  

series 

�(�) = � ���� − �� 
�

�
�

���

+ �
��

�� − �� 
�

�

�

���

  , � ∈ � 

where , �� =
�

���
∫

�(�)

(���0)���
��

 

�
 ,   � = 0, 1, 2 , …  

           �� =
�

���
∫

�(�)

(���0)����
��

 

�
 , � =  1, 2 , 3, … 

and, C  is  any  simple  closed  positively  oriented  contour  around ��  lying  in  A. 

Proof :  

 

Let   z   be  any  point  in  A.  

We   draw   two  positively  oriented  circles  ��,  ��   with  radii  ��  and ��  such  that 

   �� < �1 < �� − �� 
� < �2 < �� . 

Then,  the  domain  bounded  by  the  circles  ��,  ��  lies  in  A  and  encloses  the  

point   z. 

By  Cauchy  integral  formula  for  doubly  connected  domains,  we  have 

�(�) =
�

���
∫

�(�)

���
�� −

�

���
∫

�(�)

���
��

 

��

 

��
               .... (1) 
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For  � ∈ �� ,  we   have  � 
����

����
� < 1  and  

�

���
=

�

(���0)�(�−�0)
=

�

���0
 �

�

��
�−�0
���0

�  

                               =  
1

�−�0
 ∑  ∞
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From (1), (2)  and  (3),  we  get  
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�
 ,  � =  1, 2 , 3, …    ( Proved ) 

 

 

Special    Cases :  

(1)  If  �(�)  is   analytic   everywhere  in   �(�0, �2)  expcept  at  ��,  then  the  

Laurent  series  is  valid  in 0 < �� − �0 � < �2 . Take  �� = 0. 

(2)  If  �(�)  is   analytic  in   �(�0, �2),  then  
�(�)

(���0)����   is   analytic  in  �(�0, �2), 

so  that  by  Cauchy   Goursat  theorem   �� =
�

���
∫

�(�)

(���0)���� ��
 

�
= 0. 

Hence,   the  Laurent  series  for �(�)   reduces  to  Taylor  series  for  �(�). 

(3)  We   can  write   �(�) = ∑ ���� − �0 �
�∞

�=−∞   , � ∈ � 

     where,   �� =
�

���
∫

�(�)

(���0)��� ��
 

�
  for  all � ∈ ℤ . 

(4)  Laurent  series  of  an  analytic  function  in  an  annular  region  can  be  

differentiated  term  by  term. 

Since, Log z  is  not  analytic  in  any  annulus  around 0,  it  cannot  be  represented  

by  a   Laurent  series  around  0. 

 



 

COMPLEX  ANALYSIS  Page 16 

 

Q1. Expand  �(�) =
�

( ��� )( ��� )
   in   Laurent   series   valid   for 

   (i) |�| < 1          (ii) 1 < |�| < 3            (iii) |�| > 3               (iv)  0 < |� + 1| < 2    

 

Q2. Write   all   possible  Laurent  series  for  the  function �(�) =
�

�(���)�   about 

    � = −2 . 

Q3.   Find  the  Taylor’s  and  Laurent  series  which  represents  the  function  

�� − 1

( � + 2 )( � + 3 )
 

 (i)  when  |�| < 2             (ii)  when  2 < |�| < 3          (iii)  when |�| > 3      

 

Q4. For   the   function  �(�) =
�����

����
  ,  find  

   (i)    a  Taylor  series  valid  in  the  neighbourhood  of  the  point  i.   

   (ii)   a  Laurent  series  valid  within  the  annulus  of  which  centre  is  origin.   

 

Q5.  Find   the   Laurent   series  of  (� − 3)���
�

���
   around  � = −2 . 

Q6.  Find   the   Laurent   series   of   
����

��   where  |�| > 0 . 

Q7.  Find   the   Laurent’s   expansion   of   
7�−2

���−2���+1�
  in   the   domains 

  (i) |�| < 2                               (ii) |�| > 3                               (iii)  2 < |�| < 3           

 

 

 


