Power Series : An infinite series of the form

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$$

is called a power series, with z_0 as the point of expansion. The constants a_n are called coefficients of the power series.

Example : The geometric series $\sum_{n=0}^{\infty} z^n$ converges if |z| < 1

We ask the following questions.

1. For what values of z does the series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges?

2. What properties can be attributed to $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ at points where the series converge?

3. Under what condition may a function f(z) be represented by a power series in some neighbourhood of a point?

Theorem 1: Let $\sum_{n=0}^{\infty} a_n z^n$ be a power series. Then, any one of the following holds:

(i) either it is absolutely convergent for all $z \in \mathbb{C}$

(ii) or, there is a unique non negative real number R such that

- (a) $\sum_{n=0}^{\infty} a_n z^n$ is absolutely convergent for all $z \in \mathbb{C}$ with |z| < R, and
- (b) $\sum_{n=0}^{\infty} a_n z^n$ is divergent for all $z \in \mathbb{C}$ with |z| > R

The unique R > 0 is called the radius of convergence of the power series. The circle |z| = R is called the circle of convergence of the power series.

Proof: Read yourself

Generalisation : Consider the series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$.

According to theorem 1, the given series is absolutely convergent for all $z \in \mathbb{C}$ with $|z - z_0| < R$, and divergent for all $z \in \mathbb{C}$ with $|z - z_0| > R$.

Uniform Convergence: The sequence $\{S_n(z)\}$ is said to converge uniformly to f(z) on the set T if for every $\epsilon > 0 \exists$ a positive integer N(depending only on ϵ) such that if $n \ge N$, then $|S_n(z)| < \epsilon$ for all $z \in T$.

Weierstrass M-test: Let the infinite series $\sum_{n=0}^{\infty} u_n(z)$ have the property that for each n, $|u_n(z)| \leq M_n$ for all $z \in T$. If $\sum_{n=0}^{\infty} M_n$ converges, then $\sum_{n=0}^{\infty} u_n(z)$ converges uniformly on T.

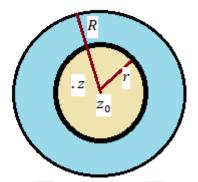
Theorem 2 : A power series is uniformly convergent within its circle of convergence.

or

Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$. Then, for each r, 0 < r < R, the series converges uniformly on the closed disk

$$\overline{B}(z_0, r) = \{ z \colon |z - z_0| \le r \}$$

Proof :



Choose 0 < r < R. Then, there exists z_1 such that

 $r < |z_1 - z_0| < R$ and the series $\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$ is convergent.

So, the sequence $\{a_n(z_1 - z_0)^n\}$ converges to zero as $n \to \infty$ and hence bounded.

So, there exists a constant M > 0 such that $|a_n(z_1 - z_0)^n| \le M \quad \forall n \ge 0 \dots (1)$ Let $z \in \overline{B}(z_0, r)$. Then, $|z - z_0| \le r < |z_1 - z_0|$

or,
$$\frac{|z-z_0|}{|z_1-z_0|} = \rho (say) < 1.$$

But,
$$|a_n(z - z_0)^n| = |a_n||z - z_0|^n = |a_n||z_1 - z_0|^n \frac{|z - z_0|^n}{|z_1 - z_0|^n}$$

= $|a_n(z_1 - z_0)^n| \left|\frac{z - z_0}{|z_1 - z_0|}\right|^n \le M\rho^n$, $n \ge 0$

Now, the series $\sum_{n=0}^{\infty} M \rho^n$ is a geometric series with common ratio $\rho < 1$ and hence convergent.

So, by Weierstrass M-test, the series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges uniformly in $\overline{B}(z_0, r)$.

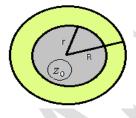
The next theorem shows that every function defined by its power series is analytic inside its circle of convergence.

Theorem 3 : Let R > 0 and $f(z) = \sum_{n=0}^{\infty} a_n z^n$ converges for |z| < R.Then, f(z) is analytic for |z| < R with $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$.

Proof: The series $\sum_{n=1}^{\infty} na_n z^{n-1}$ is absolutely convergent for |z| < R. (Why?..)

Let $g(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$, |z| < R.

We show that $f'(z_0) = g(z_0)$ for $|z_0| < R$. i.e $\lim_{z \to z_0} \left(\frac{f(z) - f(z_0)}{z - z_0} - g(z_0) \right) = 0$.



Choose *r* such that $|z_0| < r < R$.

As $z \to z_0$, we restrict z so that |z| < r.

Let $\epsilon > 0$. As, $\sum_{n=1}^{\infty} na_n r^{n-1}$ converges absolutely, \exists a positive integer N such that $\sum_{n=N+1}^{\infty} |na_n r^{n-1}| < \frac{\epsilon}{4}$ (1)

Keeping N fixed and $z \neq z_0$, we have

$$\frac{f(z) - f(z_0)}{z - z_0} - \sum_{n=1}^{\infty} n a_n z_0^{n-1} = \sum_{n=1}^{\infty} a_n \frac{(z^n - z_0^n)}{z - z_0} - \sum_{n=1}^{\infty} n a_n z_0^{n-1}$$

$$= \sum_{n=1}^{\infty} a_n \left(z^{n-1} + z^{n-2} z_0 + \dots + z_0^{n-1} \right) - \sum_{n=1}^{\infty} n a_n z_0^{n-1}$$

$$= \sum_{n=1}^{\infty} a_n \left(z^{n-1} + z^{n-2} z_0 + \dots + z_0^{n-1} - n z_0^{n-1} \right)$$

$$= \sum_{n=1}^{N} a_n \left(z^{n-1} + z^{n-2} z_0 + \dots + z_0^{n-1} - n z_0^{n-1} \right) +$$

$$\sum_{n=N+1}^{\infty} a_n \left(z^{n-1} + z^{n-2} z_0 + \dots + z_0^{n-1} - n z_0^{n-1} \right)$$

or,
$$\frac{f(z) - f(z_0)}{z - z_0} - \sum_{n=1}^{\infty} n a_n z_0^{n-1} = S_1 + S_2$$

or, $\left| \frac{f(z) - f(z_0)}{z - z_0} - \sum_{n=1}^{\infty} n a_n z_0^{n-1} \right| < |S_1| + |S_2|$ (2)

Now,

$$\begin{aligned} |a_n(z^{n-1} + z^{n-2}z_0 + \dots + z_0^{n-1} - nz_0^{n-1})| &\leq |a_n| (|z^{n-1} + z^{n-2}z_0 + \dots + z_0^{n-1}| + n|z_0|^{n-1}) \\ &\leq |a_n| (|z|^{n-1} + |z|^{n-2}|z_0| + \dots + |z_0|^{n-1} + n|z_0|^{n-1}) \\ &\leq |a_n| (r^{n-1} + r^{n-2}r + \dots + r^{n-1} - nr^{n-1}) \\ &= |a_n| (nr^{n-1} + nr^{n-1}) \\ &= 2|a_n| nr^{n-1} \end{aligned}$$

: $|S_2| \leq \sum_{n=N+1}^{\infty} 2|a_n| nr^{n-1} < \frac{\epsilon}{2}$ [From (1)]

Also, $S_1 = \sum_{n=1}^{N} a_n (z^{n-1} + z^{n-2} z_0 + \dots + z_0^{n-1} - n z_0^{n-1})$ is a polynomial in z.

 $\therefore \lim_{z \to z_0} S_1 = \lim_{z \to z_0} \left(\sum_{n=1}^N a_n \left(z^{n-1} + z^{n-2} z_0 + \dots + z_0^{n-1} - n z_0^{n-1} \right) \right)$ $= \sum_{n=1}^N a_n \left(z_0^{n-1} + z_0^{n-2} z_0 + \dots + z_0^{n-1} - n z_0^{n-1} \right) = 0$

So, for a given $\in > 0$, $\exists \delta > 0$ such that

$$|S_1 - 0| < \frac{\epsilon}{2}$$
 whenever $0 < |z - z_0| < \delta$.

Thus, for |z| < r and $|z - z_0| < \delta$, we have

$$\left|\frac{f(z)-f(z_0)}{z-z_0} - g(z_0)\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad [\text{ From (2)}]$$

$$\Rightarrow \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = g(z_0)$$

or, $f'(z_0) = g(z_0)$.
Thus, $f(z)$ is analytic inside $|z| < R$ (*Proved*)
Corollary: Theorem 3 can be repeatedly applied to obtain,
 $f^k(z) = \sum_{n=k}^{\infty} n(n-1)(n-2) \dots (n-k+1)a_n z^{n-k}$
 $= k! a_k + \frac{(k+1)!}{1!} a_{k+1} z + \frac{(k+2)!}{2!} a_{k+2} z^2 + \cdots, |z| < R$

Setting z = 0, we observe the coeffecients a_k are associated with the sum function through the following expressions,

$$f^k(0) = k! a_k$$

or,
$$a_k = \frac{f^k(0)}{k!}$$

The representation $f(z) = \sum_{k=0}^{\infty} \frac{f^k(0)}{k!} z^k$ is called the Maclaurin series representation of f(z).

Taylor Series :

We saw that the complex power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ is analytic in their region of convergence $|z - z_0| < R$, where R is the radius of convergence.

We now prove the converse part i.e. if f(z) is analytic in the disk $|z - z_0| < R$, then f(z) can be represented by a power series of the form

 $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$

Thus, every holomorphic function defined in a domain D possesses a power series expansion in a disk around any point $z_0 \in D$.

Remainder after n terms :

$$S=S_N+R_N,$$

Where S = sum of the series, $S_N = \text{sum of the series after N terms}$, $R_N = \text{remainder after N terms}$.

$$\therefore |S_N - S| = |R_N - 0|$$

We observe that a series converges to a number S if and only if the sequence of remainders tends to zero.

Defination of Taylor series : If f(z) is analytic at $z = z_0$, then the series

$$f(z_0) + f'(z_0)(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \frac{f'''(z_0)}{3!}(z - z_0)^3 + \dots = \sum_{k=0}^{\infty} \frac{f^k(z_0)}{k!}(z - z_0)^k$$

is called the Taylor series for f centered at z_0 . When the center is $z_0 = 0$, the series is called Maclaurin series for f.

Taylor's Theorem : Let f be analytic in a domain D and let $z_0 \in D$, $B(z_0, R)$ be any disk contained in D. Then, the Taylor series for f converges to f(z) for all z in $B(z_0, R)$ i.e.

$$f(z) = \sum_{k=0}^{\infty} \frac{f^k(z_0)}{k!} (z - z_0)^k$$
, for all $z \in B(z_0, R)$.

Moreover, for any $r,\; 0 < r < R$, the convergence is uniform on the closed disk $\bar{B}(z_0,r) = \{\, z \colon |z-z_0| \le r\}$.

or

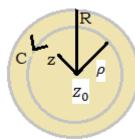
If f(z) is analytic in a circular domain D with center z_0 , then for every z in D, f(z) can be expressed as a power series about z_0 .

i.e. $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, where $a_n = \frac{f^n(z_0)}{n!}$

Proof: Let $z \in B(z_0, R)$ and let r denotes the distance between z_0 and z i.e. $|z - z_0| = r$.

Clearly, $0 \le r < R$.

Choose ρ such that $0 \le r < \rho < R$ and let C be a positively oriented circle centered at z_0 and radius ρ .



By Cauchy's integral formula,

$$f(z) = \frac{1}{2\pi i} \int_{C} \frac{f(\xi)}{\xi - z} d\xi \qquad ... (1)$$

Now,

$$\frac{1}{\xi - z} = \frac{1}{(\xi - z_0) - (z - z_0)} = \frac{1}{\xi - z_0} \left[\frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \right]$$

$$= \frac{1}{\xi - z_0} \left[1 - \frac{z - z_0}{\xi - z_0} \right]^{-1}$$

Let
$$\frac{z-z_0}{\xi-z_0} = w$$
. Then, $|w| = \frac{|z-z_0|}{|\xi-z_0|} = \frac{r}{\rho} < 1$
So, $\frac{1}{1-\frac{z-z_0}{\xi-z_0}} = \frac{1}{1-w} = 1 + w + w^2 + w^3 + \dots + w^{n-1} + \frac{w^n}{1-w}$
 $= 1 + \frac{z-z_0}{\xi-z_0} + \frac{(z-z_0)^2}{(\xi-z_0)^2} + \dots + \frac{(z-z_0)^{n-1}}{(\xi-z_0)^{n-1}} + \frac{(z-z_0)^n}{(\xi-z_0)^{n-1}(\xi-z)}$

So, (1) gives

$$f(z) = \frac{1}{2\pi i} \int_C \left[\frac{1}{\xi - z_0} + \frac{z - z_0}{(\xi - z_0)^2} + \frac{(z - z_0)^2}{(\xi - z_0)^3} + \dots + \frac{(z - z_0)^{n-1}}{(\xi - z_0)^n} + \frac{(z - z_0)^n}{(\xi - z_0)^n(\xi - z)} \right] f(\xi) \, d\xi$$

or, $f(z) = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{\xi - z_0} \, d\xi + \frac{z - z_0}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z_0)^2} \, d\xi + \dots + \frac{(z - z_0)^{n-1}}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z_0)^n} \, d\xi + \frac{(z - z_0)^n}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z_0)^n(\xi - z)} \, d\xi$

or,
$$f(z) = f(z_0) + (z - z_0) \frac{f'(z_0)}{1!} + (z - z_0)^2 \frac{f''(z_0)}{2!} + \dots + (z - z_0)^{n-1} \frac{f^{n-1}(z_0)}{(n-1)!} + R_n(z),$$

where
$$R_n(z) = \frac{(z-z_0)^n}{2\pi i} \int_C \frac{f(\xi)}{(\xi-z_0)^n (\xi-z)} d\xi$$

or, $f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \dots + a_{n-1}(z-z_0)^{n-1} + R_n(z)$,
where $a_k = \frac{f^k(z_0)}{k!}$

We next show that $R_n(z) \to 0$ as $n \to \infty$. From our constructions, $|z - z_0| = r$, $|\xi - z_0| = \rho$ $\therefore |\xi - z| = |(\xi - z_0) - (z - z_0)|$ $\ge |\xi - z_0| - |z - z_0|$ $= \rho - r$ Let $M = \max_{\xi \in C} |f(\xi)|$

Length of C is $2\pi\rho$.

So, by using ML inequality in (2), we get

$$|R_n(z)| \leq \frac{1}{2\pi} \left(\frac{r}{\rho}\right)^n \frac{M}{\rho - r} (2\pi\rho) \to 0 \text{ as } n \to \infty \text{ , as } \frac{r}{\rho} < 1$$

Thus, the series $\sum_{k=0}^{\infty} \frac{f^k(z_0)}{k!} (Z - Z_0)^k$ converges to f(z), for all $z \in B(z_0, R)$.

Now, the radius of convergence of the series $\sum_{k=0}^{\infty} \frac{f^k(z_0)}{k!} (z - z_0)^k$ is at least R, which implies that the power series converges uniformly on every closed disk $\bar{B}(z_0, r)$, where $0 \le r < R$.

Theorem 4: The function f(z) is analytic at Z_0 if and only if it can be expanded in Taylor series at Z_0 .

Proof: Combine proofs of Theorem 3 and Taylor's theorem.

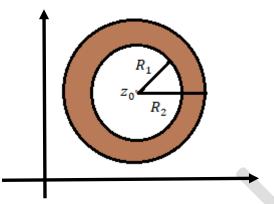
Taylor series expansion of some well known functions :

1. $f(z) = e^{z}$ 2. f(z) = Log z3. $f(z) = z^2 e^{3z}$ 4. f(z) = sinz5. f(z) = cosz6. f(z) = sinhz7. f(z) = coshz8. $f(z) = \frac{1}{1-z}$ 9. $f(z) = \frac{1}{1+z}$ 10. $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}, |z| < 2$ 11. $f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}, |z| < 1$ 12. $f(z) = \frac{1}{z}$ about z = 113. $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about z = 114. $f(z) = \frac{1}{(z+1)^2}$ about z = -i15. $f(z) = \frac{1}{(z+1)(z+2)^2}$ about z = 1

Laurent Series :

Annulus : Given, $0 \le R_1 < R_2$, we define the annulus centered at Z_0 with radii R_1 and R_2 by

$$A = A(z_0, R_1, R_2) = \{ z : R_1 < |z - z_0| < R_2 \}$$



Delta Laurent series generalizes Taylor series. Taylor series has positive integer powers and converges in a disk, whereas Laurent series is a series of positive and negative integer powers of $z - z_0$ and converges in an annulus.

Defination : Let a_n be complex numbers for $n = 0, \pm 1, \pm 2, \pm 3, \dots$ The doubly infinite series $\sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$ is called a Laurent series, and defined by

$$\sum_{n=-\infty}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} a_{-n} (z - z_0)^{-n}$$
$$= \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} , \text{ where } b_n = a_{-n}$$

Theorem 4: Let $\{f_n(z)\}$ be a sequence of functions continuous on a domain D containing the contour C, and suppose that $\{f_n(z)\}$ converges uniformly to f(z). Then, the following holds :

$$\lim_{n \to \infty} \int_C f_n(z) \, dz = \int_C \left(\lim_{n \to \infty} f_n(z) \right) dz = \int_C f(z) \, dz$$

Proof: Let L be the length of C. Choose N large enough so that

 $|f(z) - f_n(z)| < \frac{\epsilon}{L}$ for any $n \ge N$ and for all z on C.

Then, by ML inequality

$$\left| \int_{C} f(z) \, dz - \int_{C} f_{n}(z) \, dz \right| = \left| \int_{C} \left[f(z) - f_{n}(z) \right] dz \right| < \frac{\epsilon}{L} \times L = \epsilon$$

So,
$$\lim_{n \to \infty} \int_C f_n(z) dz = \int_C (\lim_{n \to \infty} f_n(z)) dz$$
 (Proved)

Theorem 5: If $\sum_{n=0}^{\infty} f_n(z)$ converges uniformly to S(z) on a domain D, then for any contour C in D the following holds:

$$\int_C \sum_{n=0}^{\infty} f_n(z) \, dz = \sum_{n=0}^{\infty} \int_C f_n(z) \, dz$$

Proof: Let $S_n(z) = \sum_{i=0}^n f_i(z)$.

Then, $\{S_n(z)\}$ converges uniformly to S(z).

$$\therefore \lim_{n \to \infty} \int_C S_n(z) \, dz = \int_C \left(\lim_{n \to \infty} S_n(z) \right) dz$$

or,
$$\lim_{n\to\infty}\int_C \sum_{i=0}^n f_i(z) dz = \int_C S(z) dz$$

or,
$$\lim_{n\to\infty}\sum_{i=0}^n \int_C f_i(z) dz = \int_C \sum_{i=0}^\infty f_i(z) dz$$

or,
$$\sum_{i=0}^{\infty} \int_C f_i(z) dz = \int_C \sum_{i=0}^{\infty} f_i(z) dz$$
 (Proved)

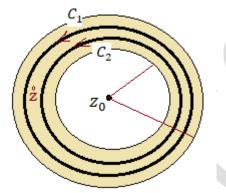
Laurent's Theorem : Let f(z) be analytic in an annulus domain $A = \{ z : R_1 < |z - z_0| < R_2 \}$. Then, f(z) can be represented by the Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} , z \in A$$

where , $a_n = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$, n = 0, 1, 2, ...

$$b_n = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z_0)^{-n+1}} d\xi$$
, $n = 1, 2, 3, ...$

and, C is any simple closed positively oriented contour around z_0 lying in A. *Proof*:



Let z be any point in A.

We draw two positively oriented circles C_1 , C_2 with radii r_1 and r_2 such that

$$R_1 < r_1 < |z - z_0| < r_2 < R_2 \ .$$

Then, the domain bounded by the circles C_1 , C_2 lies in A and encloses the point z.

By Cauchy integral formula for doubly connected domains, we have

$$f(z) = \frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{\xi - z} d\xi - \frac{1}{2\pi i} \int_{C_2} \frac{f(\xi)}{\xi - z} d\xi \qquad \dots (1)$$

For $\xi \in C_1$, we have $\left| \frac{z-z_0}{\xi-z_0} \right| < 1$ and $\frac{1}{\xi-z} = \frac{1}{(\xi-z_0)-(z-z_0)} = \frac{1}{\xi-z_0} \left[\frac{1}{1-\frac{z-z_0}{\xi-z_0}} \right]^n$ $= \frac{1}{\xi-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{\xi-z_0} \right)^n$, which is uniformly convergent on C_1 . So, $\frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{\xi-z} d\xi = \frac{1}{2\pi i} \int_{C_1} f(\xi) \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(\xi-z_0)^{n+1}} d\xi$ $= \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \int_{C_1} \frac{f(\xi)}{(\xi-z_0)^{n+1}} d\xi \right] (z-z_0)^n$ $= \sum_{n=0}^{\infty} a_n (z-z_0)^n \dots (2)$

Now, for $\xi \in C_2$, we have $\left|\frac{\xi - z_0}{z - z_0}\right| < 1$ and

$$\frac{1}{z-\xi} = \frac{1}{(z-z_0) - (\xi-z_0)} = \frac{1}{z-z_0} \left[\frac{1}{1-\frac{\xi-z_0}{z-z_0}} \right]$$

 $=\frac{1}{z-z_0}\sum_{n=0}^{\infty} \left(\frac{\xi-z_0}{z-z_0}\right)^n$, which is uniformly

convergent on C_2 .

So,
$$-\frac{1}{2\pi i} \int_{C_2} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{C_2} f(\xi) \sum_{n=0}^{\infty} \frac{\left(\xi - z_0\right)^n}{\left(z - z_0\right)^{n+1}} d\xi$$

$$= \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \int_{C_2} f(\xi) (\xi - z_0)^n d\xi \right] \frac{1}{(z - z_0)^{n+1}}$$
$$= \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \int_{C} f(\xi) (\xi - z_0)^{n-1} d\xi \right] \frac{1}{(z - z_0)^n}$$

$$= \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} \qquad \dots (3)$$

From (1), (2) and (3), we get

 $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$, where

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi , \quad n = 0, 1, 2, \dots$$

and,

 $b_n = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z_0)^{-n+1}} d\xi$, n = 1, 2, 3, ... (Proved)

Special Cases :

(1) If f(z) is analytic everywhere in $B(z_0, R_2)$ expect at z_0 , then the Laurent series is valid in $0 < |z - z_0| < R_2$. Take $R_1 = 0$.

(2) If f(z) is analytic in $B(z_0, R_2)$, then $\frac{f(\xi)}{(\xi - z_0)^{-n+1}}$ is analytic in $B(z_0, R_2)$, so that by Cauchy Goursat theorem $b_n = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z_0)^{-n+1}} d\xi = 0.$

Hence, the Laurent series for f(z) reduces to Taylor series for f(z).

(3) We can write
$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$
, $z \in A$

where,
$$a_n = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$$
 for all $n \in \mathbb{Z}$.

(4) Laurent series of an analytic function in an annular region can be differentiated term by term.

Since, $\log z$ is not analytic in any annulus around 0, it cannot be represented by a Laurent series around 0.

Q1. Expand
$$f(z) = \frac{1}{(z+1)(z+3)}$$
 in Laurent series valid for
(i) $|z| < 1$ (ii) $1 < |z| < 3$ (iii) $|z| > 3$ (iv) $0 < |z+1| < 2$

Q2. Write all possible Laurent series for the function $f(z) = \frac{1}{z(z+2)^3}$ about z = -2.

 $7^2 - 1$

Q3. Find the Taylor's and Laurent series which represents the function

(i) when
$$|z| < 2$$
 (ii) when $2 < |z| < 3$ (iii) when $|z| > 3$

Q4. For the function
$$f(z) = \frac{2z^3+1}{z^2+z}$$
, find

(i) a Taylor series valid in the neighbourhood of the point *i*.

(ii) a Laurent series valid within the annulus of which centre is origin.

Q5. Find the Laurent series of $(z-3)sin\frac{1}{z+2}$ around z=-2.

Q6. Find the Laurent series of $\frac{\sin z}{z^2}$ where |z| > 0.

Q7. Find the Laurent's expansion of $\frac{7z-2}{z(z-2)(z+1)}$ in the domains

(i) |z| < 2 (ii) |z| > 3 (iii) 2 < |z| < 3