Power Series : An infinite series of the form
=0 0n (z—2z))" =ag+a,(z—2p) +a,(z— 20)2 + -

is called a power series, with zZ; as the point of expansion. The constants a,
are called coefficients of the power series.

Example : The geometric series Y.n—o Z" converges if |z| <1
We ask the following questions.
1. For what values of z does the series Yijp—o @, (Z— 2Zy)" converges ?

2. What properties can be attributed to f(z) = Yoo @y (Z —2zy)" at points
where the series converge ?

3. Under what condition may a function f(z) be represented by a power series
in some neighbourhood of a point ?

Theorem 1: Let )., ,a,Z" be a power series. Then, any one of the following
holds :

(i) either it is absolutely convergent for all z € C

(ii) or, there is a unique non negative real number R such that
(a) Y=o @y Z™ is absolutely convergent for all z € C with |z| < R, and
(b) Yoo @n z" is divergent for all z € C with |z| > R

The unique R > 0 is called the radius of convergence of the power series. The
circle |z] = R is called the circle of convergence of the power series.

Proof : Read yourself

Generalisation : Consider the series Y., 0@y (Z — zp)™.

According to theorem 1, the given series is absolutely convergent for all z € C
with |z — zy| < R, and divergent for all z € C with |z — zy| > R.

Uniform Convergence : The sequence {S,(z)} is said to converge
uniformly to f{z) on the set T if for every € > 0 3 a positive integer N(
depending only on € ) such that if n = N, then |5,(2)| <€ for all z€T.
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Weierstrass M-test : Let the infinite series ).,—,u,(z) have the property
that for each n, |u,(z)| <M, for all z€T.If },_,M, converges, then

Yom—oUn(z) converges uniformly on T.

Theorem 2 : A power series is uniformly convergent within its circle of
convergence.

or

Let R be the radius of convergence of the power series Dy @pn(Z — Zg)".

Then, for each 7,0 <1 < R ,the series converges uniformly on the closed disk
B(zo,7) ={z:|z— 2| <7}

Proof :

Choose 0 <r < R. Then, there exists z; such that
r <|zy —zy| <R and the series Yp-oa, (2, —2Zy)" is convergent.

So, the sequence {a,(z; —z,)" } converges to zero as n — © and hence
bounded.

So, there exists a constant M >0 such that |a,(z; —2zy)"| <M Vvn=0..(1)
Let z € B(zy,7). Then, |z —zy| <7 < |z, — 2|

|z—z¢|

=p(say) < 1.

or,
|z1—2o|
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_ n
But, |a,(z — 20)"| = layllz — zo|™ = |ay||z; — 70| 222
|z1—2zo|™

Z —Zy n

= |a,(z; — zy)"| <Mp" ,n=0

Z1—Zg

Now, the series Y.,-oMp™ is a geometric series with common ratio p <1
and hence convergent.

So, by Weierstrass M-test, the series Yp-o@, (Z —2y)" converges uniformly
in B(zy,1).

The next theorem shows that every function defined by its power series is
analytic inside its circle of convergence.

Theorem 3 : Let R>0 and f(2)=Y,-0a,2" converges for |z| <R
Then, f(z)is analytic for |z| <R with f'(z) =Xy na,z" 1.

-1

Progf: The series Yg=qNaA,Z" "~ is absolutely convergent for |z| < R . (Why ?..)

Let g(z) = Xninanz"™" , |z| <R.

We show that f'(zy) = g(zy) for |zo| <R. ie lim,, (M—g(zo)) = 0.

Z—Zg

[

Choose r such that |zg| <r <R.

As z - Zy, we restrict z so that |z| <r.

Let €>0.As, Yo na,r™ !

that Yo ni1l na,r™ 1| <§ ..... (1)

converges absolutely, 3 a positive integer N such

Keeping N fixed and z # Zp, we have

f(2)- f(zp) _ Zoo .na Zon—l — 200 .a (z""-zp™)
n= n n= n

oo n-—1
— —_1nNa,Z
22, 22, Zn-l n4(0
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=y, an(z"‘1 +z" 275+ -+ Zon_l) — ¥ na,zo" !
= Z;‘f:l an(z"_l + Zn_ZZ() + .-+ Z()n_1 — TlZOn_l)

= 2%:1 Cln(Zn_1 + Zn_ZZO + -4 Z()n_1 — nzon‘l) +
Z?I(,)=N+1 Cln(Zn_l + Zn_ZZO + o + Zon_l - nZOn_l)

Lo fz) _ Yn=1nayZo" Tt =51 +S;

Z—Zy

f2)-f(z 0 -
LA 5o nayzg™t | <IS|+1S,] @)

’ VASVAY

Now,

|an(z"t + 2722 + - + zo" 1 — nzo" )| < lanl(|z™t + 27229 + -+ Z()n_ll +n|zg|" )
< lan|(|z1™* + 121" 2| Zo| + -+ 4 |Zo|" " + nlzo ")
< |apl(r™t 4+ 2r 4 ol — )
= |a,|(nr™ ! + nr* 1)
=2|a,| nr*t
a8, €YY v 2ay | nrtt < S [ From (1) ]

Also, S; =YN_, an(zn_1 + 2" 2z + -+ zp L — nZO"_l) is a polynomial in z.

s~ lim§; = lim ( N, an(zn—l 4z 275+ -+ zg" L — nzon—1))
Z—)ZO Z—)ZO

= YN _a,(zo" 1t + 2o 2z + o+ zg" L —nzp™ ) =0
So, for a given €>0, 38§ >0 such that
|S; — 0] <§ whenever 0 < |z —Zp| <6 .
Thus, for |z| <r and |z—Zy| < 6, we have

f@)- f(zo) —g(Zo)| <§ +§ =€ [ From (2)]

VARV
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f(2)- f(zp)

P 9(zo)

= lim,_,,,

or, f'(z0) = g(2o)-
Thus, f(z) is analytic inside |z| < R (Proved)
Coro//ag: Theorem 3 can be repeatedly applied to obtain,

ff@) =Y ,nn—1Dn-2).(n—k + Da,z"*

k k+2)!
(11) Ag+1Z +(+2) Qpsz2 27+, 12| <R

= k!ak+

Setting z = 0, we observe the coeffecients a; are associated with the sum
function through the following expressions,

f40) = k!ay
k
or, ai = %.

0) g

The representation f(z) =) fkl is called the Maclaurin series

representation of f(z).
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Taylor Series :

We saw that the complex power series ..o @y (Z — 2y)™ is analytic in their

region of convergence |z — Zg| < R, where R is the radius of convergence.

We now prove the converse parti.e.if f(z)is analytic in the disk |z — Zy| < R,
then f(z) can be represented by a power series of the form

f(@) =Xntoan (2 — zo)".

Thus, every holomorphic function defined in a domain D possesses a power
series expansion in a disk around any point zy € D.

‘6 Remainder after n terms:
S = SN + RN ,

Where S= sum of the series, Sy = sum of the series after N terms,

Ry = remainder after N terms.
~|Sy =S| =|Ry — 0]

We observe that a series converges to a number S if and only if the sequence
of remainders tends to zero.

Defination of Taylor series : If f(z) is analytic atz =2z, then the series

(z— Zo)k

144 nr ® k
Fla) + £ o) (2= 2) + T (g gy 1 LD (g 25 L)
k=0

is called the Taylor series for f centered at z,. When the center is 2z, =0, the
series is called Maclaurin series for f.

Taylor’s Theorem : Let f be analyticin a domain D and let zy €D,

B(zy,R) be any disk contained in D. Then, the Taylor series for f converges
to f(z) for all z in B(zy,R) i.e.

k
f(z) = Zzo=of IE!ZO) (z — Zo)k , for all z € B(zy,R).
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Moreover, for any 7, 0 <7 < R , the convergence is uniform on the closed disk
B(zg,1r)={z:|z—2zy| <7}.

or

If f(z)is analytic in a circular domain D with center z, , then for every z in

D, f(z) can be expressed as a power series about Z,.

™(2p)

ie. f(z) =Ym-0a,(z—2y)" , where a, = "

Proof: Let z € B(Zg, R) and let r denotes the distance between z, and z
ie. |z—2zy| =7.

Clearly, 0 <r <R.

Choose p such that 0 <7 <p <R and let C be a positively oriented circle
centered at z; and radius p.

By Cauchy’s integral formula,

fcf(f) L)

Zm

Now,

1 1 1 1
§—z (-z0)-(z—20) £-2g 1-2"2%0

A
- 5—120 [1 B :ig]_l
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zZ—Z, _z—zo| _

Let = W. Then, |W|= - < 1
£z, |§-z0]
So, ;&N=SW=1+W+mﬂ+W3+m+WW4+K
i
1+ 2% 4 (Z—Zo)22 4ot (Z—Zo)::__l1 (Z_nZ—O1)n
§-z9  (§-20) (§—2o) (-zp)""1(¢-2)
So, (1) gives
1 z—zy , (z-2)° (z—29)" (z—zp)" ]
- L + + Ry i d
A (5—20)2 (§-29)° Gzl | GarGa)f )%
ﬂa 229 0 _F©) R L
or, f(2) = o fc el (E—20)? g+t — — e ¢z )n

(z—zp)" f()
27l fC (E-zp)"(¢-2) df

or, f(2) = f(z0) + (2 = 20) T2 4 (2= 20 D 4 4 (2 — ) L0
Rn(2),

_ (z—zp)" 16)
where R,(z) = Znio fC 207G dé

or, f(z) =ap+a,(Z—2p) + a,(Z — 2p)* + -+ a,_1(Z — )" 1 + R, (2),

f*(20)
k!

where a; =

We next show that R, (z) >0 as n— .

From our constructions, |z —zy| =71 ,[f —2zy| =p
E=z [ =16 —20) — (2 — 2)
= [& = zo| — |z — 2|
=p—r

Let M = maxeec | f(S)]
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f AR @) = | [ LI | 2)

2mi VC (§—2zp)"(§-2)
ow, ‘ f($) (Z—ZO)n (Z_ZO): |f(€) ‘ < (l)nl
(§-20) ¢~2) (§-2p) |1 577 proopT

Length of C is 2mp.

So, by wusing ML inequality in (2), we get

1 (r\" M r
|R,,(2)] SE(;) E(an) -»0asn—->o , as ;< 1.

fk(Zo)
k!

Thus, the series Yo (Zz—2z )k converges to f(z), for all z € B(zy, R).
k=0 0 0

k(20)
Now, the radius of convergence of the series Z;Jco:()f klo (Z —Zo)k is

atleast R, which implies that the power series converges uniformly on every
closed disk B(zy,7), where 0 <r <R.

Theorem 4 : The function f(z) is analytic at Zy if and only if it can be

expanded in Taylor series at Zj.

777'00][: Combine proofs of Theorem 3 and Taylor’s theorem.
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Taylor series expansion of some well known functions :

1. f(z) =e€?

2. f(z)=Logz

3. f(2) = 72

4. f(z) = sinz

5. f(z) = cosz

6. f(z) = sinhz

7. f(z) = coshz

8. f(2) =

9. f(@) =17

10. f(2) _m 1z| < 2
(z—2)(z+2)

11. f(2) =m,|z| <1

12. f(2) =§ about z =1

273+1
s about z =1

13. f(2) =~

14. f(z) = (Z+11)2 about z = —i

15. f(Z) _m aboutz =1
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Laurent Series :

Annulus : Given, 0 £ R; <R, , we define the annulus centered at Zy with
radii R; and R, by

A =A(Z0,R1,R2) ={Z:R1 < |Z_ZO | <R2}

A

B Laurent series generalizes Taylor series. Taylor series has positive integer
powers and converges in a disk, whereas Laurent series is a series of

positive and negative integer powers of Z — Z; and converges in an annulus.

Defination : Let a, be complex numbers for n =0, £1, +2, +3,.... The

doubly infinite series Y oe_o an(z — Z )n is called a Laurent series, and
defined by

Z an(z—25)" = Z an(z—20)" + z a_n(z—20)"
n=—oo n=0 n=1
=Z$zo=0 an(z — Zp )n + Z;?:l(z_bTT;)n , where b, =a_,

Theorem 4 : Let { f,,(z)} be a sequence of functions continous on a domain
D containing the contour C, and suppose that {f,(z)} converges uniformly
to f(z). Then, the following holds :

im | @ dz= | (i f,2)dz = | £ dz

Y)rooﬁ Let L be the length of C. Choose N large enough so that
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|f(Z)—fn(Z)|<% for any n >N and for all z on C.

Then, by ML inequality

fc f(2) dz - fc f.(2) dz

f[f(Z)—f (2) |dz <SxL=¢
c n L

So, 1lllrr010 Jo @) dz = [ (limy,e f,(2))d2z (Proved)

Theorem 5 :If 37, f (2) converges uniformly to S(z) on a domain D, then

for any contour C in D the following holds :

Lan(z) dz = chfn(z) dz

Proof : Let S,(z) =YL, f(2).

Then, { Sy(2)} converges uniformly to S(z).

n—>oo

~ lim . Sn(2)dz = fc (Ylll_)r(r}0 Sn(z)) dz

or,nli_>r£10f Zn:fi(z) dz = fS(z) dz
o c

or, limy, e Y7ty . fi(2) dz = [ 272, fi(2) dz

or, 32, [ fi@) dz = [,52,fi(2) dz  (Proved )
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Laurent’s Theorem : Let f(z) be analytic in an annulus domain

A= {Z 'Ry < |Z — Z | <R, } Then, f(z) can be represented by the Laurent

series

f(z)—Zan(z ZO) +2(z—z )n ,ZEA
0

1 f
where , a, = i e Tz ———d¢é, n=0,1,2,

by = 2mi fC (E—zp)~"+1 d¢ ,n=1,2,3,..

and, C is any simple closed positively oriented contour around Z; lying in A.

Proof :

Let z be any point in A.

We draw two positively oriented circles C;, C; with radii r, and r, such that
R1<7"1<|Z_ZO|<7"2<R2 .

Then, the domain bounded by the circles C;, C; lies in A and encloses the
point z.

By Cauchy integral formula for doubly connected domains, we have

_ 1 (&) 1 (&)
f(2) = %fclf:df _ﬁfcz = ds e (1)
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%) <1 and

—Zg

For ¢ € C;, we have

1 1 _ 1 1
-z (§-z9)-(z—z¢) &-zg |1-22%0
§-2

-1
$—-2

0 B s = [ FO T g

z—2Z\"
Z?loz() (f—_Z(())) , Which is uniformly convergent on C; .

’

27i
o 1 f()
= Yo [E fcl Eozo) df] (z — zp)"

= T [ fy o dé| (2 = 2"

(f Z)Tl+1
= Yin=0an (Z — 2p)" - (2)
Now, for & € C,, we have i_jo <1 and
—Z
1 1 1 1
z—=§ (2—z9)—(§—20) z—2Zg|y_5"%
Z—ZO

1 00 §—Zo " : . .
= — Zn=0 — , which is uniformly
Z—Z( Z—Zy

convergent on C, .

f® 4 w  (§-79)"
o, 27Tl fCZ f anf Zf(f) ZTI:O mdf
1

=T o e, FOE — 20" de] Gy

2T

= %oy [ L A - zo)" ]

(z—zp)"
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_ fo'e} bn

= N ... (3
n=1 (z—zo) @)
From (1), (2) and (3), we get

f(Z) = 2%0:0 an(z — Zy )n + 2?{):1(2_1972),1 , where

=2 [ L9 g5 n=0,12,..

An = E C (§—zp)"+1
_ 1 f) _
and, bn —Efcmdf , N = 1,2,3,... [177'006/]

S’pecia/ Cases :

(1) If f(2) is analytic everywhere in B(zg,R;) expcept at z,, then the
Laurent series is valid in 0<|Z—Zy| < R;. Take R; = 0.

(2) If f(2) is analytic in B(zg,R;), then % is analytic in B(zg,R3),
40
1
so that by Cauchy Goursat theorem b, = pyr fC @ ;(?nﬂ dé = 0.
—40

Hence, the Laurent series for f(z) reduces to Taylor series for f(z).

(3) We can write f(2) =Ynt—wan(Z2— 20 )n ,ZEA

1 f®
J

2mi )¢ (eozg)n1 dé for alln € Z.

where, a, =
(4) Laurent series of an analytic function in an annular region can be
differentiated term by term.

Since, Log z is not analytic in any annulus around O, it cannot be represented
by a Laurent series around O.
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1 , . .
Q1. Expand f(2) = D) B Laurent series valid for

@ lz] <1 i) 1< |z| <3 (iif) |z] > 3 iv) 0<|z4+1] <2

1
z(z+2)3

Q2. Write all possible Laurent series for the function f (Z) = about

z=—-2.
Q3. Find the Taylor’s and Laurent series which represents the function
z%2 —1
(z+2)(z+3)

(i) when |z| < 2 (ii) when 2 < |z| <3 (iii) when |z| > 3

2z3+1

VAEYA

Q4. For the function f (Z) = , find

(i) a Taylor series valid in the neighbourhood of the point i

(i) a Laurent series valid within the annulus of which centre is origin.

. 1
Q5. Find the Laurent series of (z — 3)Smm around z = —2 .

sinz

Q6. Find the Laurent series of — where |z| >0 .

. , . 7z—2 . .
Q7. Find the Laurent’s expansion of 27=2)(z+ 1) in the domains

Q) |z] < 2 (ii) |z| > 3 (i) 2 <|z| <3
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